Solution-processed soldering of carbon nanotubes for flexible electronics.

نویسندگان

  • K D M Rao
  • B Radha
  • K C Smith
  • T S Fisher
  • G U Kulkarni
چکیده

We report a simple lithography-free, solution-based method of soldering of carbon nanotubes with Ohmic contacts, by taking specific examples of multi-walled carbon nanotubes (MWNTs). This is achieved by self-assembling a monolayer of soldering precursor, Pd(2+) anchored to 1,10 decanedithiol, onto which MWNTs could be aligned across the gap electrodes via solvent evaporation. The nanosoldering was realized by thermal/electrical activation or by both in sequence. Electrical activation and the following step of washing ensure selective retention of MWNTs spanning across the gap electrodes. The soldered joints were robust enough to sustain strain caused during the bending of flexible substrates as well as during ultrasonication. The estimated temperature generated at the MWNT-Au interface using an electro-thermal model is ∼150 °C, suggesting Joule heating as the primary mechanism of electrical activation. Further, the specific contact resistance is estimated from the transmission line model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-walled carbon nanotube networks for flexible and printed electronics

Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier...

متن کامل

Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

Articles you may be interested in A simple drain current model for single-walled carbon nanotube network thin-film transistors Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template Appl. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate Complementary voltage inv...

متن کامل

Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.

Solution-processed thin-films of semiconducting carbon nanotubes as the channel material for flexible electronics simultaneously offers high performance, low cost, and ambient stability, which significantly outruns the organic semiconductor materials. In this work, we report the use of semiconductor-enriched carbon nanotubes for high-performance integrated circuits on mechanically flexible subs...

متن کامل

Solution-processed carbon nanotube thin-film complementary static random access memory.

Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous...

متن کامل

Printed Carbon Nanotube Electronics and Sensor Systems.

Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 24 7  شماره 

صفحات  -

تاریخ انتشار 2013